Amide-to-Ester Substitution Improves Membrane Permeability of a Cyclic Peptide Without Altering Its Three-Dimensional Structure

2020 
Cyclic peptides are attractive molecules as inhibitors with high affinity and selectivity against intracellular protein-protein interactions (PPIs). On the other hand, cyclic peptides generally have low passive cell-membrane permeability, which makes it difficult to discover cyclic peptides that efficiently permeate into cells and inhibit intracellular PPIs. Here, we show that backbone amide-to-ester substitutions are useful for improving membrane permeability of peptides. Permeability in a series of model dipeptides increased upon amide-to-ester substitution. Amide-to-ester substitutions increased permeability in the same manner as amide-to-N-methyl amide substitutions, which are conventionally used for increasing permeability. Furthermore, amide-to-ester substitutions of exposed amides of a cyclic peptide successfully improved permeability. Conformational studies of the cyclic peptides using NMR and molecular mechanics calculations revealed that an amide-to-ester substitution of an exposed amide bond did not affect its low-energy conformation in CDCl3, in contrast with an N-methyl amide substitution. We envision that amide-to-ester substitution will be a potentially useful strategy for rational design of bioactive peptides with high membrane permeability.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []