Spectral tuning of a locally bent microfiber taper interferometer with a nanosized liquid crystal overlay.

2016 
In this paper, the tuning characteristics of locally bent microfiber taper covered with a nanosized high-refractive-index liquid crystal (LC) layer under different temperatures and electric field intensities have been theoretically analyzed and experimentally investigated. A locally bent microfiber taper interferometer with a waist diameter of ∼3.72  μm is fabricated by using the flame brushing technique, followed by bending the transition region of the taper to form a modal interferometer and later by placing a ∼200  nm LC layer over the uniform taper waist region. Experimental results indicate that a high-efficiency thermal or electric tuning of an LC-coated locally bent microfiber taper interferometer could be achieved. This suggests a potential application of this device as tunable all-fiber photonic devices, such as filters, modulators, and sensing elements.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    3
    Citations
    NaN
    KQI
    []