A new amperometric method for rapid detection of Escherichia coli density using a self-assembled monolayer-based bienzyme biosensor

2006 
Abstract A new amperometric method was developed for rapid detection of Escherichia coli ( E. coli ) density using a bienzyme biosensor. The bienzyme biosensor was fabricated based on the covalent immobilization of laccase and horseradish peroxidase (HRP) at indium tin oxide (ITO) electrode by (3-aminopropyl) triethoxysilane (APTES) monolayer. The bienzyme biosensor showed a high sensitivity in determination of the polyphenolic compounds, which was microbially generated from the salicylic acid (SA) added into the culture medium during the course of E. coli metabolism. Since the amount of polyphenolic compounds depends on E. coli density, the bienzyme biosensor was applied for the rapid and high sensitive detection of E. coli density after the E. coli solution was incubated in culture medium with salicylic acid for 2.5 h at 37 °C. By chronoamperometry, the amplified response current was obtained at the bienzyme biosensor, due to the substrate recycling of the polyphenolic compounds driven by bienzyme-catalyzed oxidation and electrochemical reduction. The amplified response current at the biosensor was linear with the E. coli density ranging from 1.6 × 10 3 to 1.0 × 10 7  cells/mL. The bienzyme biosensor could detect the E. coli density with a detection limit of 9.7 × 10 2  cells/mL within 3 h.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    52
    Citations
    NaN
    KQI
    []