Phase separation on cell surface: a mechanism of basic fibroblast growth factor signal transduction with heparan sulphate

2021 
Abstract Liquid-liquid phase separation (LLPS) driven by weak, multivalent interactions among biomolecules is an important means of cellular compartmentation and plays a central role in cellular processes including stress resistance, RNA processing and other cellular activities. Coordination of the condensates and inner membrane was recently revealed, mediating intracellular processes like cell signalling and cargo trafficking. Intracellular LLPS has been observed extensively in vivo, whereas LLPS in extracellular compartments has not been reported under physiological conditions. Here we show, for the first time, that basic fibroblast growth factor (bFGF) undergoes LLPS on the cell surface by interacting with heparan sulphate proteoglycans (HSPG) and the phase transition is required for effective downstream signalling. The condensation is driven by multivalent interactions between bFGF and sulpho-groups on heparan sulphate (HS), and dimerization and oligomerization of bFGF promote the LLPS process. Compared with free bFGF, phase separated bFGF with HS showed higher thermo stability, providing a potential mechanism for the preservation of bFGF activity. Furthermore, we have found that downstream signalling is triggered by phase separation of a ternary complex formed by bFGF, HSPGs and FGFR on cell surface. Our results revealed a molecular mechanism that HS can serve as a platform to promote extracellular proteins like bFGF to condensate on outer membrane, consequently coordinating the signal transduction activities. This novel finding expands the horizons of phase separation in vivo, providing a new dimension on how HSPG may regulate extracellular protein behaviour and cell signalling.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    0
    Citations
    NaN
    KQI
    []