The prolyl hydroxylase PHD3 maintains β-cell glucose metabolism during fatty acid excess

2020 
The alpha ketoglutarate-dependent dioxygenase, prolyl-4-hydroxylase 3 (PHD3), is a hypoxia-inducible factor target that uses molecular oxygen to hydroxylate proline. While PHD3 has been reported to influence cancer cell metabolism and liver insulin sensitivity, relatively little is known about effects of this highly conserved enzyme in insulin-secreting β-cells. Here, we show that deletion of PHD3 specifically in β-cells (βPHD3KO) is associated with impaired glucose homeostasis in mice fed high fat diet. In the early stages of dietary fat excess, βPHD3KO islets energetically rewire, leading to defects in the management of pyruvate fate and a shift away from glycolysis. However, βPHD3KO islets are able to maintain oxidative phosphorylation and insulin secretion by increasing utilization of fatty acids to supply the tricarboxylic acid cycle. This nutrient-sensing switch cannot be sustained and βPHD3KO islets begin to show signs of failure in response to prolonged metabolic stress, including impaired glucose-stimulated ATP/ADP rises, Ca2+ fluxes and insulin secretion. Thus, PHD3 might be a pivotal component of the β-cell glucose metabolism machinery by suppressing the use of fatty acids as a primary fuel source under obesogenic and insulin resistant states.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    0
    Citations
    NaN
    KQI
    []