Detection of cone dysfunction induced by digoxin in dogs by multicolor electroretinography

2005 
It is difficult to detect discrete cone function with the present conventional electroretinography (ERG) examination. In this study, we developed contact electrodes with a built-in color (red (644 nm), green (525 nm), or blue (470 nm)) light source (color LED-electrode), and evaluated an experimental model of digoxin in the dog. First, 17 normal Beagle dogs were used to determine which electrode works well for color ERG measurement on dogs. Then, color ERG was performed on seven normal Beagle dogs at various points during a 14-day period of digoxin administration. A single daily dose of 0.0125 mg/kg/day, which is within the recommended oral maintenance dosage range for dogs, was administered orally for 2 weeks. Ophthalmic examination, measurement of plasma concentration of digoxin, and color ERG examination were performed. On first examination, amplitudes of all responses were significantly (P < 0.01) lower with the red, than with the blue and green electrodes during ERG recording. In ERG using the red electrode, the standard deviation was large. According to these preliminary results, the red electrode was not used in the experimental dog model with digoxin. In the digoxin administrated animals, no significant change was observed in the ophthalmic examination findings. The digoxin level increased steadily throughout the dosing period but was always within the therapeutic range for dogs. In rod ERG, no abnormalities were detected with any electrode. In standard combined ERG, decreased amplitude of the a-wave was detected with every electrode. In single flash cone ERG, prolongation of implicit time was detected by color ERG with the blue and green electrodes. In 30-Hz flicker ERG, decreased amplitude was detected only by color ERG with the blue electrode. The decreased amplitude and prolonged implicit time recovered after termination of digoxin administration. Cone dysfunction induced by digoxin in the dog was revealed by multicolor ERG using blue and green LED-electrodes. Multi-color ERG was useful for detecting cone type-specific dysfunction in the dog.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    11
    Citations
    NaN
    KQI
    []