Porous MoS2 Framework and its Functionality for Electrochemical Hydrogen Evolution Reaction and Lithium Ion Batteries

2019 
A unique porous framework of highly ordered few-layered MoS2 was realized by using the facile solvothermal technique. The structure was composed of crystalline MoS2 in the 2H phase, with ordered, 100–150 nm wide pores and a 15 nm wall thickness. The porous framework was studied for electrochemical hydrogen evolution reaction (HER) and rechargeable Li ion batteries. The porous MoS2 showed enhanced catalytic activity for electrochemical HER, with an overpotential of −210 mV at 10 mA cm–2. In addition, in Li ion storage testing, the half-cell delivered high specific capacities: 1265 and 1256 mAh g–1 at 50 mA g–1 and 1172 and 1161 mAh g–1 at 200 mA g–1 for the first discharge and charge with Coulombic efficiencies 99.3% and 99.0%, respectively. The cyclic stability showed a reversible specific discharge capacity of 1178 mAh g–1 after 100 cycles, which is attributed to the porous MoS2 framework. An impedance study revealed an improved charge transfer process, attributed to the availability of the channels for ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    12
    Citations
    NaN
    KQI
    []