Regulation of Homotypic Cell-Cell Adhesion by Branched N-Glycosylation of N-cadherin Extracellular EC2 and EC3 Domains

2009 
The effects of altering N-cadherin N-glycosylation on several cadherin-mediated cellular behaviors were investigated using small interfering RNA and site-directed mutagenesis. In HT1080 fibrosarcoma cells, small interfering RNA-directed knockdown of N-acetylglucosaminyltransferase V (GnT-V), a glycosyltransferase up-regulated by oncogene signaling, caused decreased expression of N-linked β(1,6)-branched glycans expressed on N-cadherin, resulting in enhanced N-cadherin-mediated cell-cell adhesion, but had no effect on N-cadherin expression on the cell surface. This effect on adhesion was accompanied by decreased cell migration and invasion, opposite of the effects observed when GnT-V was overexpressed in these cells (Guo, H. B., Lee, I., Kamar, M., and Pierce, M. (2003) J. Biol. Chem. 278, 52412–52424). A detailed study using site-directed mutagenesis demonstrated that three of the eight putative N-glycosylation sites in the N-cadherin sequence showed N-glycan expression. Moreover, all three of these sites, located in the extracellular domains EC2 and EC3, were shown by leucoagglutinating phytohemagglutinin binding to express at least some β(1,6)-branched glycans, products of GnT-V activity. Deletion of these sites had no effect on cadherin levels on the cell surface but led to increased stabilization of cell-cell contacts, cell-cell adhesion- mediated intracellular signaling, and reduced cell migration. We show for the first time that these deletions had little effect on formation of the N-cadherin-catenin complex but instead resulted in increased N-cadherin cis-dimerization. Branched N-glycan expression at three sites in the EC2 and -3 domains regulates N-cadherin-mediated cell-cell contact formation, outside-in signaling, and cell migration and is probably a significant contributor to the increase in the migratory/invasive phenotype of cancer cells that results when GnT-V activity is up-regulated by oncogene signaling.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    65
    Citations
    NaN
    KQI
    []