Dipolar Cairo lattice: Geometrical frustration and short-range correlations

2019 
We have studied low-energy configurations in two-dimensional arrays consisting of Ising-type dipolar coupled nanomagnets lithographically defined onto a two-dimensional Cairo lattice, thus dubbed the dipolar Cairo lattice. Employing synchrotron-based photoemission electron microscopy (PEEM), we perform real-space imaging of moment configurations achieved after thermal annealing. These states are then characterized in terms of vertex populations, spin- and emergent magnetic charge correlations, and a topology-enforced emergent ice rule. The results reveal a strong dominance of short-range correlations and the absence of long-range order, reflecting the high degree of geometrical spin frustration present in this example of an artificial frustrated spin system.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    12
    Citations
    NaN
    KQI
    []