An electrographic AV optimization for the maximum integrative atrioventricular and ventricular resynchronization in CRT

2021 
Background Atrioventricular (AV) delay could affect AV and ventricular synchrony in cardiac resynchronization therapy (CRT). Strategies to optimize AV delay according to optimal AV synchrony (AVopt-AV) or ventricular synchrony (AVopt-V) would potentially be discordant. This study aimed to explore a new AV delay optimization algorithm guided by electrograms to obtain the maximum integrative effects of AV and ventricular resynchronization (opt-AV). Methods Forty-nine patients with CRT were enrolled. AVopt-AV was measured through the Ritter method. AVopt-V was obtained by yielding the narrowest QRS. The opt-AV was considered to be AVopt-AV or AVopt-V when their difference was 20 ms. Results The results showed that sensing/pacing AVopt-AV (SAVopt-AV/PAVopt-AV) were correlated with atrial activation time (Pend-As/Pend-Ap) (P Conclusion The SAVopt-AV/PAVopt-AV and SAVopt-V/PAVopt-V were correlated with the atrial activation time and the intrinsic AV conduction interval respectively. Almost half of the patients had a > 20 ms difference between SAVopt-AV/PAVopt-AV and SAVopt-V/PAVopt-V. The opt-AV could be estimated based on electrogram parameters.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    0
    Citations
    NaN
    KQI
    []