Coupled Analysis Method for High-Field Magnet Coil Using Coated Conductor Based on $J\hbox{-}E$ Characteristics as a Function of Temperature, Magnetic Field Vector and Mechanical Strain

2009 
We have characterized nonlinear current transport properties in a coated conductor as a function of temperature, magnetic field vector and mechanical strain, and then have developed a thermally-electromagnetically-structurally coupled analysis code for a high-field magnet coil. The distributions of heat generation and electromagnetic force in the coil are computed by electromagnetic analysis. Then, the temperature distribution and the strain distribution are correspondingly calculated by thermal analysis and by structural analysis. Furthermore, both of them are fed back to the electromagnetic analysis. These analyses are based on finite element method, and are repeated until the convergence. By taking a design example of a 40 T class magnet coil using a GdBCO coated conductor, we have discussed the necessity of the consideration of thermally-structurally influenced transport properties in the coil for the coil design.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    5
    Citations
    NaN
    KQI
    []