Sequential neural activity in sensorimotor area and mirror neural system for graded mirror therapy with imagined hand movements.

2021 
Background Graded motor imagery (GMI) therapy is a neural rehabilitative physiotherapy that has been shown to alleviate the severity of complex regional pain syndrome, phantom limb pain and disability. Objective To identify neural networks associated with the use of graded mirror therapy (MT) while imagining hand movements. Methods We made a block-design functional magnetic resonance imaging study of MT included three experiments: (1) immobile unimanual MT (IU-MT), in which the right hand flexed and made a fist, which then remained immobile; (2) mobilization unimanual MT (MU-MT), in which the right hand performed a flexion-extension movement; and (3) mobilization bimanual MT (MB-MT), in which both hands performed a flexion-extension movement. When subjects started their hand movements, they gazed at the mirror and imagined the same movement behind the mirror. Results We discovered that the sensorimotor area of the left brain, superior temporal gyrus/middle temporal gyrus (STG/MTG) of the right brain and visual areas were activated by IU-MT. In MU-MT, only the STG/MTG was activated. Furthermore, MB-UT mostly activated the sensorimotor area and STG of the right brain. However, there were no brain areas activated by MU-MT compared with IU-MT or MB-MT; however, MB-MT activated more motor areas than IU-MT. Importantly, we determined that the level of mirror imagery was negatively correlated with signals in the mirror neuron system (MNS) and positively related with the signals in the sensorimotor areas. Conclusions We suggest that graded MT might be a sequential therapeutic program that can enhance the sensorimotor cortex. The MNS might have an initiating role in graded MT. Thus, there is the possibility that graded MT is a helpful treatment strategy for the rehabilitation of dysfunctional patients.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    0
    Citations
    NaN
    KQI
    []