Hydrothermally treated titanium surfaces for enhanced osteogenic differentiation of adipose derived stem cells.

2021 
Abstract Implant surface plays a crucial role in improving osseointegration and long-term implant life. When the implant comes in contact with the bone tissue, the bone marrow mesenchymal cells interact with the implant surface and the surface properties such as morphology, wettability, mechanical properties and chemistry influences cell migration, proliferation and differentiation. Different surface modification strategies such as ceramic coatings, surface dealloying, and surface topography modifications for improving osteointegration have been investigated. However, studies have not yet established which of the surface property is more influential. In this study, titanium surfaces were treated hydrothermally with sodium hydroxide and sulfuric acid separately. This treatment led to the development of two unique surface topography at nanoscale. These modified surfaces were characterized for surface morphology, wettability, chemistry, and crystallinity. Cytotoxicity, cell adhesion, proliferation, morphology, and differentiation of adipose derived stem cells on modified surfaces was investigated. The results indicate that wettability does influence initial cell adhesion. However, the surface morphology can play major role in cell spreading, proliferation and differentiation. The results indicate that titanium surfaces treated hydrothermally with sodium hydroxide led to a nanoporous architecture that promoted appropriate cell interaction with the surface promoting osteoblastic lineage.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    2
    Citations
    NaN
    KQI
    []