Theoretical prediction on photoelectric and supramolecular properties of benzoquinone-tetrathiafulvalene macrocyclic molecules.

2021 
Benzoquinone has the ability to serve as an electron acceptor, and tetrathiafulvalene has the ability to serve as an electron donor. Based on the facts above, this work creatively cycles the benzoquinone unit and the tetrathiafulvalene unit alternately into macrocyclic molecules, the cyclopolymers of benzoquinone-tetrafluorene (C[n]QTTF, n = 3~6). To explore their structure and properties, the M06-2X functional of density functional theory (DFT) with 6-311g(d) basis set was used to optimize the ground-state structures of C[n]QTTF. Based on the stable configurations of the ground states, the electronic structure property is analyzed systematically. The results show that these macrocyclic molecules have excellent electron transport capability and electrochemical activity. Then, the electron absorption spectra of each system are carried out by using time-dependent density functional theory (TD-DFT) at the M062X/6-311+G(d) level. It turns out that their maximum absorption wavelengths are all in the visible range. Further calculation suggests that C[n]QTTF can also be characterized with one-dimensional self-assembly, double-walled assembly, and the host-guest inclusion performance, based on which it gains a variety of supramolecular structures. In summary, the benzoquinone-tetrafluorofurene macrocyclic molecules predicted by DFT calculations may be of assistance to the potential applications in organic electronics and supramolecular chemistry.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    0
    Citations
    NaN
    KQI
    []