Gpnmb is a Melanoblast-Expressed, MITF-Dependent Gene

2009 
Expression profile analysis clusters Gpnmb with known pigment genes, Tyrp1, Dct, and Si. During development, Gpnmb is expressed in a pattern similar to Mitf, Dct and Si with expression vastly reduced in Mitf mutant animals. Unlike Dct and Si, Gpnmb remains expressed in a discrete population of caudal melanoblasts in Sox10-deficient embryos. To understand the transcriptional regulation of Gpnmb we performed a whole genome annotation of 2,460,048 consensus MITF binding sites, and cross-referenced this with evolutionarily conserved genomic sequences at the GPNMB locus. One conserved element, GPNMB-MCS3, contained two MITF consensus sites, significantly increased luciferase activity in melanocytes and was sufficient to drive expression in melanoblasts in vivo. Deletion of the 5’-most MITF consensus site dramatically reduced enhancer activity indicating a significant role for this site in Gpnmb transcriptional regulation. Future analysis of the Gpnmb locus will provide insight into the transcriptional regulation of melanocytes and Gpnmb expression can be used as a marker for analyzing melanocyte development and disease progression. SIGNIFICANCE Comparative analysis of gene expression profiles using melanocyte lines derived from mice provides a powerful resource to explore genetic components of melanocyte development and pigment cell function. Using expression data, we identified Gpnmb as a new marker for early melanoblast development. We show that Gpnmb is dependent on Mitf for in vivo expression and marks a unique set of Sox10-independent melanoblasts. We identified an 89 basepair evolutionarily conserved genomic sequence at the Gpnmb locus that can enhance expression in melanocytes and tested MITF E-box consensus sequences for their involvement in melanocyte-restricted expression. Gpnmb and the panel of genes identified in this study will be valuable resources for understanding the genetic components involved in melanocyte development and diseases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    44
    Citations
    NaN
    KQI
    []