Alarmin-painted exosomes elicit persistent antitumor immunity in large established tumors in mice.

2020 
Treating large established tumors is challenging for dendritic cell (DC)-based immunotherapy. DC activation with tumor cell-derived exosomes (TEXs) carrying multiple tumor-associated antigen can enhance tumor recognition. Adding a potent adjuvant, high mobility group nucleosome-binding protein 1 (HMGN1), boosts DCs’ ability to activate T cells and improves vaccine efficiency. Here, we demonstrate that TEXs painted with the functional domain of HMGN1 (TEX-N1ND) via an exosomal anchor peptide potentiates DC immunogenicity. TEX-N1ND pulsed DCs (DCTEX-N1ND) elicit long-lasting antitumor immunity and tumor suppression in different syngeneic mouse models with large tumor burdens, most notably large, poorly immunogenic orthotopic hepatocellular carcinoma (HCC). DCTEX-N1ND show increased homing to lymphoid tissues and contribute to augmented memory T cells. Importantly, N1ND-painted serum exosomes from cancer patients also promote DC activation. Our study demonstrates the potency of TEX-N1ND to strengthen DC immunogenicity and to suppress large established tumors, and thus provides an avenue to improve DC-based immunotherapy. The use of tumour exosome-activated dendritic cell (DC) immunotherapy shows promise for the treatment of large established tumours. Here, the authors generate alarmin HMGN1-attached tumour exosomes which significantly improve therapy efficacy by boosting DC activation in several preclinical mouse models.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    29
    Citations
    NaN
    KQI
    []