Determination of free amino nitrogen in beer mash with an inline NIR transflectance probe and data evaluation by machine learning algorithms
2021
Free amino nitrogen (FAN) concentrations in beer mash can be determined with machine learning algorithms
from near-infrared (NIR) spectra. NIR spectroscopy is an alternative to a classical chemical analysis and
allows for the application of inline process quality control. This study investigates the capabilities of
different machine learning techniques such as Ordinary Least Squares (OLS) regression, Decision Tree
Regressor (DTR), Bayesian Ridge Regression (BRR), Ridge Regression (RR), K-nearest neighbours (KNN)
regression as well as Support Vector Regression (SVR) to predict the FAN content in beer mash from NIR
spectra. Various pre-processing strategies such as principal component analysis (PCA) and data
standardization were used to process NIR data that were used to train the machine learning algorithms.
Algorithm training was conducted with NIR data obtained from 16 beer mashes with varying FAN
concentrations. The trained models were then validated with 4 beer mashes that were not used for model
training. Machine learning algorithms based on linear regression showed the highest prediction accuracy on
unpre-processed data. BRR reached a root mean square error of calibration (RMSEC) of 2.58 mg/L (R2 = 0.96)
and a prediction accuracy (RMSEP) of 2.81 mg/L (R2 = 0.96). The FAN concentration range of the investigated
samples was between approx. 180 and 220 mg/L. Machine learning based NIR spectra analysis is an alternative
to classical chemical FAN level determination methods and can also be used as inline sensor system.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI