Impact-induced concerted mass transport on W surfaces by a voidion mechanism

2018 
Abstract Using low-temperature field ion microscope techniques, we studied at the atomic level morphological evolution of the W surface through bombardment by a beam of several keV He atoms. This technique allows the direct observation of the results of the high energy He atom impact on the elementary damage stages. The formation of the 〈110〉 and 〈100〉 linear vacancy chains and the high relaxation of the near-neighbors of the surface vacancy clusters were revealed. Performed molecular dynamics simulations shows that a single He atom impact triggers the relaxation process of the linear vacancy chain by a substantial decrease of the distance between atoms at both sides of the chain. The observed inward relaxations in W and Mo are an order of magnitude more than that for a single vacancy. It was revealed a novel highly cooperative impact-induced mass transport mechanism on the stepped surface: the formation and motion of a surface spatially delocalized vacancies (voidions). Surface voidions are extremely mobile: the mean velocity of atoms in voidions equals to a substantial portion of the sound velocity. Successive collective translations of the 〈111〉 lines of atoms in adjacent voidions give rise to a concerted gliding motion of great atomic clusters.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    9
    Citations
    NaN
    KQI
    []