In Situ Synchrotron Radiation Measurements During Axial Strain In Hydrogen Cathodically Charged Duplex Stainless Steel SAF 2205

2017 
The objective of this work is the evaluation of hydrogen effects on the martensitic transformation and strain hardening in Duplex Stainless Steels (DSS) SAF 2205 (UNS S32205/S31803). DSS are two-phase alloys (austenite and ferrite), which are used for applications requiring high mechanical strength, in corrosive environments. Therefore, it is necessary a better understanding of the phenomena involved on the hydrogen embrittlement. For this, in situ measurements of X-ray diffraction were made during tensile test in H2 cathodically charging DSS 2205. The hydrogen charging reduces the stress relaxation, reducing the ductility and suppressing the hydrogen-induced austenitic to martensitic transformation. In addition, it also reduces the strain hardening (dislocation multiplication) in austenite. The strain hardening seems to have a higher influence than martensitic transformation on fracture process, even in absence of hydrogen.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    6
    Citations
    NaN
    KQI
    []