Controlled synthesis of (CuO-Cu2O)Cu/ZnO multi oxide nanocomposites by facile combustion route: A potential photocatalytic, antimicrobial and anticancer activity
2020
Abstract Photocatalytic activity of (CuO-Cu2O)Cu/ZnO hetero-junction nanocomposites along with their luminescent, biological applications in the progress of anticancer and antibacterial agents is investigated. The Cu and Zn bi-components modified (CuO-Cu2O)Cu/ZnO nanocomposites were synthesized via facile combustion route in the presence of controlled fuel to oxidizer ratio and were characterized by X-Ray Diffraction (XRD) patterns, Transmission electron microscopy (TEM), High resolution Transmission electron microscopy (HRTEM), Scanning Electron Microscopy (SEM), X-ray photoelectron Spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), photoluminescence (PL) and energy dispersive X-ray (EDX) analysis. The PL and UV–Visible diffused reflectance spectral (UV–Vis-DRS) techniques were used to measure the optical sensitivity and tuning of band gap in the samples. The excellent photocatalytic degradation of Methylene Blue and industrial waste water under Sunlight irradiation depends on the mass ratios of Cu/Zn. The findings show that the addition of a certain proportion of CuO, Cu2O, ZnO, and Cu can promote efficiency in Sunlight harvesting and separation of charge carriers. Process parameters namely catalyst quantity, dye concentration and a proposal for the mechanism of degradation pathway, experiments for trapping and enhancer are investigated. The study of photoluminescence, CIE and CCT calculations suggests that the present nanocomposite may find applications as phosphor material in warm white LEDs. The second segment of this study deals with the investigation of antibacterial performance of composites upon Gram-negative and Gram-positive bacteria. The results indicate that nanocomposites can be used in antibacterial control systems and as an important growth inhibitor in various microorganisms. The cytotoxic effect of the (CuO-Cu2O)Cu/ZnO (CCCZ11) nanocomposite was determined by colorimetric and flow cytometric cell cycle analysis. Our experimental results show that the nanocomposite can induce apoptosis and suppress the proliferation of HeLa cells. The applications of nanocomposites based on Cu, an abundant and inexpensive metal has created much interest in various multifunctional applications.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
81
References
5
Citations
NaN
KQI