Transcriptional Profiling of Human Hematopoiesis During In Vitro Lineage-Specific Differentiation

2005 
To better understand the transcriptional program that a ccompanies orderly lineage-specific hematopoietic differentiation, we performed serial oligonucleotide microarray analysis of human normal CD34+ bone marrow cells during lineage-specific differentiation. CD34+ bone marrow cells isolated from healthy individuals were selectively stimulated in vitro with the cytokines erythropoietin (EPO), thrombopoietin (TPO), granulocyte colony-stimulating factor (G-CSF), and granulocyte macrophage colony-stimulating factor (GM-CSF). Cells from each of the lineages were harvested after 4, 7, and 11 days of culture for expression profiling. Gene expression was analyzed by oligonucleotide microarrays (HG-U133A; Affymetrix, Santa Clara, CA). Experiments were done in triplicates. We identified 258 genes that are consistently upregulated or downregulated during the course of lineage-specific differentiation within each specific lineage (horizontal change). In addition, we identified 52 genes that contributed to a specific expression profile, yielding a genetic signature specific for successive stages of differentiation within each of the three lineages. Analysis of horizontal changes selected 21 continuously upregulated genes for EPO-induced differentiation (including GTPase activator proteins RAP1GA1 and ARHGAP8, which regulate small Rho GTPases), 21 for G-CSF–induced/GM-CSF–induced differentiation, and 91 for TPO-induced differentiation (including DLK1, of which the role in normal hematopoiesis is not defined). During the lineage-specific differentiation, 58 (erythropoiesis), 30 (granulopoiesis), and 37 (thrombopoiesis) genes were significantly downregulated, respectively. The expression of selected genes was confirmed by real-time polymerase chain reaction. Our data encompass the first extensive transcriptional profile of human hematopoiesis during in vitro lineage-specific differentiation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    50
    Citations
    NaN
    KQI
    []