Potent inhibition of serine proteases by heterocyclic sulfide derivatives of 1,2,5-thiadiazolidin-3-one 1,1 dioxide.

2000 
Abstract The existence of subtle differences in the S n ′ subsites of closely-related (chymo)trypsin-like serine proteases, and the fact that the 1,2,5-thiadiazolidin-3-one 1,1 dioxide scaffold docks to the active site of (chymo)trypsin-like enzymes in a substrate-like fashion, suggested that the introduction of recognition elements that can potentially interact with the S n ′ subsites of these proteases might provide an effective means for optimizing enzyme potency and selectivity. Accordingly, a series of heterocyclic sulfide derivatives based on the 1,2,5-thiadiazolidin-3-one 1,1 dioxide scaffold (I) was synthesized and the inhibitory activity and selectivity of these compounds toward human leukocyte elastase (HLE), proteinase 3 (PR 3) and cathepsin G (Cat G) were then determined. Compounds with P 1 =isobutyl were found to be potent, time-dependent inhibitors of HLE and, to a lesser extent PR 3, while those with P 1 =benzyl inactivated Cat G rapidly and irreversibly. This study has demonstrated that 1,2,5-thiadiazolidin-3-one 1,1 dioxide-based heterocyclic sulfides are effective inhibitors of (chymo)trypsin-like serine proteases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    35
    Citations
    NaN
    KQI
    []