Modeling and control of photovoltaic and fuel cell based alternative power systems

2018 
Abstract Photovoltaic (PV) systems and fuel cells (FCs) represent interesting solutions as being alternative power sources with high performance and low emission. This work presents a modeling and control study of two power generators; photovoltaic array and fuel cell based systems. An MPPT approach to optimize the PV system performances is proposed. The PV system consists of a PV array connected to a DC-DC buck converter and a resistive load. A maximum power point tracker controller is required to extract the maximum generated power. Based on Incremental Conductance (INC) principle, the idea of the proposed control is to use a Fuzzy Logic Controller (FLC) that allows the choice of the duty cycle step size which is used to be fixed in conventional MPPT algorithms. The variable step is computed according to the value of the PV power-voltage characteristic slope. The second working system comprises a controlled DC-DC converter fed by a proton exchange membrane fuel cell (PEMFC) and supplies a DC bus. The mathematical model of the PEMFC system is given. The converter duty cycle is adjusted in order to regulate the DC bus voltage. Obtained simulation results validate the control algorithms for both of studied power systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    20
    Citations
    NaN
    KQI
    []