Boron-doped graphene quantum dots for selective glucose sensing based on the "abnormal" aggregation-induced photoluminescence enhancement.

2014 
A hydrothermal approach for the cutting of boron-doped graphene (BG) into boron-doped graphene quantum dots (BGQDs) has been proposed. Various characterizations reveal that the boron atoms have been successfully doped into graphene structures with the atomic percentage of 3.45%. The generation of boronic acid groups on the BGQDs surfaces facilitates their application as a new photoluminescence (PL) probe for label free glucose sensing. It is postulated that the reaction of the two cis-diol units in glucose with the two boronic acid groups on the BGQDs surfaces creates structurally rigid BGQDs–glucose aggregates, restricting the intramolecular rotations and thus resulting in a great boost in the PL intensity. The present unusual “aggregation-induced PL increasing” sensing process excludes any saccharide with only one cis-diol unit, as manifested by the high specificity of BGQDs for glucose over its close isomeric cousins fructose, galactose, and mannose. It is believed that the doping of boron can introduc...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    260
    Citations
    NaN
    KQI
    []