Understanding fracture behaviour of PGA reactor core graphite: perspective

2014 
Magnox reactors are cooled by carbon dioxide gas. The pile grade A (PGA) graphite moderator bricks in the reactor core loose mass and become more porous during service due to the radiolytic oxidation caused by energy deposition, mainly gamma radiation. In addition, neutron irradiation brings about strengthening by irradiation hardening and dimensional change. In this perspective, experimental data related to the attendant microstructural changes and the associated initiation and propagation of cracks within the graphite are revisited. These results are compared with the predictions of multiscale finite element modelling based upon an idealised microstructure. The discussion considers the quasi-brittle characteristics of the PGA graphite over a range of service exposure conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    12
    Citations
    NaN
    KQI
    []