In vitro antimicrobial efficacy of laser exposed chlorpromazine against Gram-positive bacteria in planktonic and biofilm growth state

2019 
Abstract Aqueous chlorpromazine solutions exposed to 266 nm generated as fourth harmonic of Nd:YAG pulsed laser along time intervals from 1 min to 240 min were investigated for their antimicrobial activity against planktonic and adherent Gram-positive bacterial strains. Qualitative and quantitative assays based on microbiological methods and flow cytometry assays were performed to establish the minimum inhibitory and minimum biofilm eradication concentrations and to reveal some of the possible mechanisms of antimicrobial activity. Optimal irradiation conditions and combinations of photoproducts for achieving the best antimicrobial and antibiofilm effects are suggested. It was confirmed that chlorpromazine solutions irradiated for 15 min and 30 min have the best antimicrobial and antibiofilm activity against Staphylococcus aureus ATCC 6538, methicillin susceptible Staphylococcus aureus , methicillin resistant Staphylococcus aureus , Enterococcus faecium 17-VAR, Enterococcus faecalis 2921, and Bacillus subtilis 6633. Flow cytometry revealed that two of the possible mechanisms of the antimicrobial activity of irradiated chlorpromazine are the inhibition of efflux pumps activity and induction of cellular membrane lesions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    5
    Citations
    NaN
    KQI
    []