Expectation-Maximization Algorithm of Gaussian Mixture Model for Vehicle-Commodity Matching in Logistics Supply Chain

2021 
A vehicle-commodity matching problem (VCMP) is presented for service providers to reduce the cost of the logistics system. The vehicle classification model is built as a Gaussian mixture model (GMM), and the expectation-maximization (EM) algorithm is designed to solve the parameter estimation of GMM. A nonlinear mixed-integer programming model is constructed to minimize the total cost of VCMP. The matching process between vehicle and commodity is realized by GMM-EM, as a preprocessing of the solution. The design of the vehicle-commodity matching platform for VCMP is designed to reduce and eliminate the information asymmetry between supply and demand so that the order allocation can work at the right time and the right place and use the optimal solution of vehicle-commodity matching. Furthermore, the numerical experiment of an e-commerce supply chain proves that a hybrid evolutionary algorithm (HEA) is superior to the traditional method, which provides a decision-making reference for e-commerce VCMP.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    5
    Citations
    NaN
    KQI
    []