Simultaneous phycoremediation of petrochemical wastewater and lipid production by Chlorella vulgaris

2021 
A novel strategy of using microalgae Chlorella vulgaris for simultaneous bio-treatment of petrochemical wastewater and lipid production was developed in the present study. Phycoremediation was carried out in 30 days. The profile of fatty acids was identified, and the specifications of biodiesel including saponification value, iodine value, cetane number, long-chain saturated factor, cold filter plugging point, cloud point, allylic position equivalent and bis-allylic position equivalent were predicted by BiodieselAnalyzer® software. Besides, polycyclic aromatic hydrocarbons were determined in both wastewater samples and produced lipid. The observed data showed that biodiesel from C. vulgaris was superior to petrodiesel in terms of suitability in diesel engines. Moreover, contamination of petrochemical wastewater can influence the expression of a variety of genes in algae. To investigate the effectiveness of contamination on the expression of lipid synthesis as well as three photosynthesis genes, a real-time polymerase chain reaction assay was used to quantify transcript levels of PsaB (photosystem I reaction center protein subunit B), psbC (an integral membrane protein component of photosystem II), and rbcL (a large subunit of ribulose-1,5-bisphosphate carboxylase oxygenase). Furthermore, the gene expression level of accD (acetyl-coenzyme A carboxylase carboxyl transferase subunit beta, chloroplastic) was studied to discover the effect of wastewater on lipid production. The results showed that when diluted petrochemical wastewater (50%) was used as a media for C. vulgaris cultivation, these genes expression significantly increased. For 50% diluted wastewater, the maximum removal of BOD, COD, total nitrogen, and total phosphor has been 30.36%, 10.89%, 69.89%, and 92.59%, respectively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    1
    Citations
    NaN
    KQI
    []