Nonisothermal crystallization kinetics and spherulite morphology of poly(trimethylene terephthalate)

2004 
Abstract The nonisothermal melt crystallization behavior of poly(trimethylene terephthalate) (PTT) was investigated using the DSC technique. PTT peak exothermic crystallization temperature was found to move to lower temperatures as the cooling rate was increased. The modified Avrami equation exponent, n , was 4 when the cooling rates were between 5 and 15 °C/min, indicating a thermal nucleation and a three-dimensional spherical growth mechanism. When the cooling rate was increased to 25 °C/min, n gradually decreased to near 3, implying the nucleation mechanism changed to an athermal mode. PTT nonisothermal crystallization behavior could also be analyzed using the Ozawa equation and the combined equations of Ozawa and Avrami with very good fit of the data. PTT spherulite morphologies and the sign of the birefringence depended strongly on the spherulite's growth temperature. When the growth temperature was decreased from 222 to 170 °C, the spherulite changed from a saturation-type dendritic morphology to one with a colorful banded texture; the sign of the birefringence also changed in the following order: from a weakly positive spherulite → mixed spherulite → weakly negative spherulite → negative spherulite → positive spherulite → negative spherulite → positive spherulite.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    70
    Citations
    NaN
    KQI
    []