Developing a design optimization methodology for the thermal-hydraulic evaluation for a high temperature reactor during a DLOCA

2021 
Methods of implementing uncertainty within nuclear reactor modelling have traditionally been achieved via worst case scenario uncertainty quantification. This article investigates how this practice can be expanded to provide data on the driving factors behind the temperatures experienced during accident conditions via a global sensitivity analysis. The second part of the article investigates how a stochastic optimization technique can be included within the design process to provide the most cost-effective core geometry which meets the temperature constraints of the fuel and the reactor pressure vessel. The third study investigates the impact of how uncertainty reduction can be used in combination with the stochastic optimization technique to provide further design optimization.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    3
    References
    0
    Citations
    NaN
    KQI
    []