Toxicity removal assessments related to degradation pathways of azo dyes: Toward an optimization of Electro-Fenton treatment.

2016 
Abstract The degradation pathway of Acid Orange 7 (AO7) by Electro-Fenton process using carbon felt cathode was investigated via HPLC-UV and LC-MS, IC, TOC analysis and bioassays ( Vibrio Fischeri 81.9% Microtox ® screening tests). The TOC removal of AO7 reached 96.2% after 8 h treatment with the optimal applied current density at −8.3 mA cm −2 and 0.2 mM catalyst concentration. The toxicity of treated solution increased rapidly to its highest value at the early stage of electrolysis (several minutes), corresponding to the formation of intermediate poisonous aromatic compounds such as 1,2-naphthaquinone (NAPQ) and 1,4-benzoquinone (BZQ). Then, the subsequent formation of aliphatic short-chain carboxylic acids like acetic acid, formic acid, before the complete mineralization, leaded to a non-toxic solution after 270 min for 500 mL of AO7 (1 mM). Moreover, a quantitative analysis of inorganic ions (i.e. ammonium, nitrate, sulfate) produced during the course of degradation could help to verify molar balance with regard to original nitrogen and sulfur elements. To conclude, a clear degradation pathway of AO7 was proposed, and could further be applied to other persistent pharmaceuticals in aquatic environment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    64
    Citations
    NaN
    KQI
    []