High-Pressure Structural Evolution of Disordered Polymeric CS2.

2021 
Carbon disulfide is an archetypal double-bonded molecule belonging to the class of group IV-group VI, AB2 compounds. It is widely believed that, upon compression to several GPa at room temperature and above, a polymeric chain of type (-(C═S)-S-)n, named Bridgman's black polymer, will form. By combining optical spectroscopy and synchrotron X-ray diffraction data with ab initio simulations, we demonstrate that the structure of this polymer is different. Solid molecular CS2 polymerizes at ∼10-11 GPa. The polymer is disordered and consists of a mixture of 3-fold (C3) and 4-fold (C4) coordinated carbon atoms with some C═C double bonds. The C4/C3 ratio continuously increases upon further compression to 40 GPa. Upon decompression, structural changes are partially reverted, while the sample also undergoes partial disproportionation. Our work uncovers the nontrivial high-pressure structural evolution in one of the simplest molecular systems exhibiting molecular as well as polymeric phases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    1
    Citations
    NaN
    KQI
    []