Aluminium alloy based hydrogen storage tank operated with sodium aluminium hexahydride Na3AlH6

2014 
Abstract Here we present the development of an aluminium alloy based hydrogen storage tank, charged with Ti-doped sodium aluminium hexahydride Na 3 AlH 6 . This hydride has a theoretical hydrogen storage capacity of 3 mass-% and can be operated at lower pressure compared to sodium alanate NaAlH 4 . The tank was made of aluminium alloy EN AW 6082 T6. The heat transfer was realised through an oil flow in a bayonet heat exchanger, manufactured by extrusion moulding from aluminium alloy EN AW 6060 T6. Na 3 AlH 6 is prepared from 4 mol-% TiCl 3 doped sodium aluminium tetrahydride NaAlH 4 by addition of two moles of sodium hydride NaH in ball milling process. The hydrogen storage tank was filled with 213 g of doped Na 3 AlH 6 in dehydrogenated state. Maximum of 3.6 g (1.7 mass-% of the hydride mass) of hydrogen was released from the hydride at approximately 450 K and the same hydrogen mass was consumed at 2.5 MPa hydrogenation pressure. 45 cycle tests (rehydrogenation and dehydrogenation) were carried out without any failure of the tank or its components. Operation of the tank under real conditions indicated the possibility for applications with stationary HT-PEM fuel cell systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    22
    Citations
    NaN
    KQI
    []