High-robustness intravascular photoacoustic endoscope with a hermetically sealed opto-sono capsule

2020 
The prevailing open-structure intravascular photoacoustic (IVPA) endoscope emits a gradually deformed laser beam with exposed optical or acoustical components bearing pollution and damage in arterial lumen. Deformed laser beam scanning, which causes a low excitation efficiency and serious deterioration of the transverse resolution, is a current big obstacle to the application of photoacoustic endoscopy in intravascular imaging. Hence, the stable and reliable IVPA endoscope is indispensable. In this letter, we designed a high-robustness intravascular photoacoustic (HR-IVPA) endoscope with a hermetically sealed opto-sono capsule. The distal end of the opto-sono capsule was integrated with miniaturized optics, including a customized C-Lens and a customized total-reflection prism (TRP). The TRP was first applied to a side-viewing IVPA endoscope, featuring a high-throughput energy coupling efficiency of 90% and a cut-off free damage threshold. The optical path structure of the endoscope, optimized using optical simulation tools, overcame the ambiguous focus shift caused by chromatic dispersion and achieved a waist size of 20 µm as well as a focus depth of 4 mm in water at the wavelength of 1200 nm. The mass phantom experiments demonstrated that the HR-IVPA endoscope afforded repeatable IVPA images with a relatively constant signal-to-noise ratio (SNR) of about ∼41.8 dB and a transverse resolution of about ∼23 µm. The imaging experiments of the stent and lipid further demonstrated the robustness and validated the imaging ability of the HR-IVPA endoscope, which opens a new avenue for improving the endoscopic imaging capability, strengthening the credible detection of atherosclerotic cardiovascular disease.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    4
    Citations
    NaN
    KQI
    []