Gamma Decay of Unbound Neutron-Hole States in $^{133}$Sn

2017 
Excited states in the nucleus 133Sn, with one neutron outside the doubly-magic 132Sn core, were populated following one-neutron knockout from a 134Sn beam on a carbon target at relativistic energies at the Radioactive Isotope Beam Factory at RIKEN. Besides the rays emitted in the decay of the known neutron single-particle states in 133Sn additional strength in the energy range 3.5-5.5 MeV was observed for the fi rst time. Since the neutron-separation energy of 133Sn is low, Sn=2.402(4) MeV, this observation provides direct evidence for the radiative decay of neutron- unbound states in this nucleus. The ability of electromagnetic decay to compete successfully with neutron emission at energies as high as 3 MeV above threshold is attributed to a mismatch between the wave functions of the initial and final states in the latter case. These fi ndings suggest that in the region south-east of 132Sn nuclear structure effects may play a signifi cant role in the neutron vs. competition in the decay of unbound states. As a consequence, the common neglect of such effects in the evaluation of the neutron-emission probabilities in calculations of global b -decay properties for astrophysical simulations may have to be reconsidered.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    19
    Citations
    NaN
    KQI
    []