Sedimentary Environmental Evolution of the Western Taiwan Shoal Area since the Late Pleistocene

2021 
A new pollen analysis and major and trace element contents were conducted on a 40 m long gravity core recovered from the Taiwan Shoal (sand ridges), south of the Taiwan Strait, beginning in the Late Pleistocene. The changes in the pollen assemblage and concentration represent the climate change around the Taiwan Shoal and the strength of the Zhe-Min Coastal Current, whereas variations in major and trace element contents can imply the source of the sediments in the Taiwan Shoal, which are correlated with the rise or fall of the sea level with increased marine dinoflagellate cysts. The interval of 40–30 m was characterized by high pollen and spore concentrations, and evergreen Quercus was dominant taxon, which indicates a warm sedimentary environment, and the surrounding area of the Taiwan Shoal were covered by a tropical and subtropical broad-leaved forest. There were no pollen and spores from 30–24 m, which indicates a strong hydrodynamic sedimentary environment, and most of the Taiwan Shoal might have been experience subaerial exposure. The interval of 24–17 m was characterized by the reappearance of pollen and spores, as well as marine dinoflagellate cysts and foraminifera, suggesting the climate was warm and wet in the study area and an apparent marine sedimentary environment with relatively high sea level. Deciduous Quercus dominated the interval of 17–12 m, which indicated that the climate was relatively cool, corresponding to the end of Marine isotope stages3 (MIS3) to the Last Glacial Maximum accompanied by weathering and denudation. Above 12 m, the low pollen concentration with increased marine dinoflagellate cysts and foraminifera abundance suggested a marine sedimentary environment in the Taiwan Shoal. The high concentrations in Pinus corresponds to Holocene high sea level.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    0
    Citations
    NaN
    KQI
    []