Simulation and validation of flow and heat transfer in an infinite mini-channel using Smoothed Particle Hydrodynamics

2019 
Abstract Fluid flow and heat transfer in small channels have a wide range of engineering and medical applications. It has always been a topic of numerous theoretical, numerical and experimental studies. Several numerical methods have been used to simulate such flows. The most common approaches are the finite volume method (FVM) and the direct numerical simulation (DNS), which are numerically expensive to solve cases involving complex engineering problems. The main purpose of this work is to investigate the usability of the mesh-free particle based Smoothed Particle Hydrodynamics (SPH) method to simulate convective heat transfer. To validate our approach, as a starting point, we choose to solve a simple well-established problem which is the laminar flow and heat transfer through an infinitely long mini-channel. The solution obtained from SPH method has been compared to the solution from FVM method and analytical solution with good accuracy. The results presented in this paper show that SPH is capable to solve laminar forced convection heat transfer, however, turbulent flow cases need to be considered to be able to utilize the SPH method for engineering thermal applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []