Enhancing low-cycle fatigue life of commercially-pure Ti by deformation at cryogenic temperature

2021 
Abstract In this study, the low-cycle fatigue behavior of a cryogenic-rolled commercially pure titanium alloy was investigated, and compared with those of undeformed and room-temperature rolled ones. The amounts of deformation twins increased to >69.8% after cryogenic temperature rolling, and to 27.5% after room temperature rolling. Strain-controlled low-cycle fatigue tests were performed at total strain amplitudes 0.4 % ≤ Δ e t 2 ≤ 1.2%. The Coffin-Manson and hysteresis energy-based models confirmed that low-cycle fatigue resistance was remarkably improved with increasing the volume fraction of deformation twins by pre-deformation. As the proportion of deformation twins in the microstructure increased, the hysteresis loop area decreased, the striation spacing decreased, and the severity of crack-deflection behavior increased. At low Δ e t 2  = 0.4%, dislocation recovery was suppressed in the pre-deformed microstructure, so cyclic behavior was stable. However, at Δet/2 ≥ 0.8%, the recovery became the predominant mechanism, so well-defined cell structures formed and cyclic softening occurred. The smaller dislocation cells formed in RTR and CTR were considered to cause more severe crack arrest than in AR.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    0
    Citations
    NaN
    KQI
    []