Cryo-EM structure and potential enzymatic function of human six-transmembrane epithelial antigen of the prostate 1.

2020 
: Six-transmembrane epithelial antigen of the prostate 1 (STEAP1) is an integral membrane protein that is highly upregulated on the cell surface of several human cancers, making it a promising therapeutic target to manage these diseases. It shares sequence homology with three enzymes (STEAP2-4) that catalyze the NADPH-dependent reduction of iron(III). However, STEAP1 lacks an intracellular NADPH-binding domain and does not exhibit cellular ferric-reductase activity. Thus, both the molecular function of STEAP1 and its role in cancer progression remain elusive. Here, we present a ~3.0 A cryo-EM structure of trimeric human STEAP1 bound to three antigen-binding fragments (Fabs) of the clinically used antibody mAb120.545. The structure disclosed that STEAP1 adopts a reductase-like conformation and interacts with the Fabs through its extracellular helices. Enzymatic assays in human cells revealed that STEAP1 promotes iron(III) reduction when fused to the intracellular NADPH-binding domain of its family member STEAP4, suggesting that STEAP1 functions as a ferric reductase in STEAP hetero-trimers. Our work provides a foundation for deciphering the molecular mechanisms of STEAP1 and may be instrumental in the design of new therapeutic strategies to target STEAP1 in cancer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    8
    Citations
    NaN
    KQI
    []