Bcl-2 and mdr-1 gene expression during doxorubicin-induced apoptosis in murine leukemic P388 and P388/R84 cells

1997 
The induction of apoptosis by doxombicin (DOX) alone or in the presence of efflux blockers, verapamil (VPL) or trifluoperazine (TFP), and of bcl-2 and mdr-1 gene expression was analyzed in murine leukemic P388 and doxorubicin resistant P388/R84 cells. Incubation with DOX (0.1-1 μM) for 24 hours induced apoptosis in sensitive cells but not in the resistant P388/R84 cells. Flow cytometric analysis of apoptosis by terminal dideoxynucleotidyl (TdT) assay showed that 1 μM DOX induced apoptosis in 70% of P388 cells and in less than 5% of P388/R84 cells. When P388/R84 resistant cells were co-incubated with DOX and efflux blockers (10 μM VPL or 15,uM TFP), enhanced cellular DOX accumulation was accompanied by apoptosis. Quantitative analysis of DNA fragmentation by 14 C-thymidine incorporation and gel electrophoresis of fragmented DNA confirmed the results from TdT assay and showed enhancement of DOX-induced DNA fragmentation in the presence of efflux blockers (VPL or TFP). DOX + VPL and DOX + TFP combination treatments induced apoptosis in upto 55% and 83% of P388/R84 cells, respectively. mdr-1 mRNA and P-gp expression were not altered during DOX-induced apoptosis. The results suggest that in murine leukemic cells, down-regulation of bcl-2 mRNA expression occurs during DOX-induced apoptosis and it depends on the cellular drug retention determined by mdr-1/P-gp drug efflux.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    17
    Citations
    NaN
    KQI
    []