A High-Accuracy Blackbody for CLARREO
2010
The NASA climate science mission Climate Absolute Radiance and Refractivity Observatory (CLARREO), which is to
measure Earth's emitted spectral radiance from orbit for 5 years, has an absolute accuracy requirement of 0.1 K (3σ) at
220 K over most of the thermal infrared. To meet this requirement, CLARREO needs highly accurate on-board
blackbodies which remain accurate over the life of the mission. Space Dynamics Laboratory is developing a prototype
blackbody that demonstrates the ability to meet the needs of CLARREO. This prototype is based on a blackbody design
currently in use, which is relatively simple to build, was developed for use on the ground or on-orbit, and is readily
scalable for aperture size and required performance. We expect the CLARREO prototype to have emissivity of ~0.9999
from 1.5 to 50 μm, temperature uncertainties of ~25 mK (3σ), and radiance uncertainties of ~10 mK due to temperature
gradients. The high emissivity and low thermal gradient uncertainties are achieved through cavity design, while the SItraceable
temperature uncertainty is attained through the use of phase change materials (mercury, gallium, and water) in
the blackbody. Blackbody temperature sensor calibration is maintained over time by comparing sensor readings to the
known melt temperatures of these materials, which are observed by heating through their melt points. Since blackbody
emissivity can potentially change over time due to changes in surface emissivity (especially for an on-orbit blackbody)
an on-board means of detecting emissivity change is desired. The prototype blackbody will include an emissivity
monitor based on a quantum cascade laser to demonstrate the concept.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI