How Strained are [1]Ferrocenophanes?

2017 
A series of [1]ferrocenophanes ([1]FCPs) bridged by boron, carbon, silicon, phosphorus, and sulfur, respectively, were investigated by DFT calculations. A comparison of measured molecular structures with calculated structures showed that the applied B3PW91/6-311+G(d,p) level of theory provides realistic molecular geometries. Geometry optimization of carbon-bridged [1]FCPs (ERx = CH2, CMe2) revealed that these unknown species with tilt angles α of 38.5° may be sufficiently stable to allow isolation, given sufficient kinetic stability. In order to measure the amount of strain in [1]FCPs, a hypothetical 1,2-addition of a C–H group of FeCp2 across the E–Cipso bond of a [1]FCP to give a bis(ferrocenyl)species was investigated. The calculated reaction enthalpies were compared to experimental ΔHROP values as obtained from differential scanning calorimetry (DSC) measurements.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    76
    References
    11
    Citations
    NaN
    KQI
    []