Interaction-induced current asymmetries in resonant transport through interacting quantum-dot spin valves revealed by iterative summation of path integrals

2020 
Resonant tunneling of electrons between two ferromagnets and a quantum dot in the presence of an externally applied magnetic field reveals a strong gate dependence in the linear and nonlinear bias regime. This gate dependence originates from the interplay between Coulomb interactions and spin-dependent hybridization between the quantum dot and the leads. To take into account Coulomb interaction strengths of the same order of magnitude as the external magnetic field and the hybridization strength we adopt the numerically exact iterative summation of path integrals (ISPI).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    0
    Citations
    NaN
    KQI
    []