Aptamer-Functionalized and Backbone Redox-Responsive Hyperbranched Polymer for Targeted Drug Delivery in Cancer Therapy

2016 
A novel type of backbone redox-responsive hyperbranched poly(2-((2-(acryloyloxy)ethyl)disulfanyl)ethyl 4-cyano-4-(((propylthio)carbonothioyl)-thio)-pentanoate-co-poly(ethylene glycol) methacrylate) (HPAEG) has been designed and prepared successfully via the combination of reversible addition–fragmentation chain-transfer (RAFT) polymerization and self-condensing vinyl polymerization (SCVP). Owing to the existence of surface vinyl groups, HPAEG could be efficiently functionalized by DNA aptamer AS1411 via Michael addition reaction to obtain an active tumor targeting drug delivery carrier (HPAEG-AS1411). The amphiphilic HPAEG-AS1411 could form nanoparticles by macromolecular self-assembly strategy. Cell Counting Kit-8 (CCK-8) assay illustrated that HPAEG-AS1411 nanoparticles had low cytotoxicity to normal cell line. Flow cytometry and confocal laser scanning microscopy (CLSM) results demonstrated that HPAEG-AS1411 nanoparticles could be internalized into tumor cells via aptamer-mediated endocytosis. Compared...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    79
    Citations
    NaN
    KQI
    []