Spatial Shape Constrained Fuzzy C-Means (FCM) Clustering for Nucleus Segmentation in Pap Smear Images

2016 
Precise segmentation of Pap smear cell nucleus is crucial for early diagnosis of cervical cancer. This task is particularly challenging because of cell overlapping, inconsistent staining, poor contrast and other imaging artifacts. In this study, a novel method is proposed to segment cell nucleus from overlapping Pap smear cell images. The proposed technique introduces a circular shape function (CSF) to increase the robustness of Pap cell nucleus segmentation using fuzzy c-means clustering. CSF imposes a shape constrain over the formed clusters, while improves the boundary of the nucleus. The shape function helps to differentiate the pixels having similar intensity value but located in different spatial regions. The method is evaluated using Overlapping Cervical Cytology Image Segmentation Challenge - ISBI 2014 dataset and compared with the traditional FCM clustering and recently published state-of-the-art methods. Both qualitative and quantitative measures indicate that the new technique performs favorably with others.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    24
    Citations
    NaN
    KQI
    []