Generalizing Adversarial Examples by AdaBelief Optimizer.

2021 
Recent research has proved that deep neural networks (DNNs) are vulnerable to adversarial examples, the legitimate input added with imperceptible and well-designed perturbations can fool DNNs easily in the testing stage. However, most of the existing adversarial attacks are difficult to fool adversarially trained models. To solve this issue, we propose an AdaBelief iterative Fast Gradient Sign Method (AB-FGSM) to generalize adversarial examples. By integrating AdaBelief optimization algorithm to I-FGSM, we believe that the generalization of adversarial examples will be improved, relying on the strong generalization of AdaBelief optimizer. To validate the effectiveness and transferability of adversarial examples generated by our proposed AB-FGSM, we conduct the white-box and black-box attacks on various single models and ensemble models. Compared with state-of-the-art attack methods, our proposed method can generate adversarial examples effectively in the white-box setting, and the transfer rate is 7%-21% higher than latest attack methods.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    2
    Citations
    NaN
    KQI
    []