Local Uniform Convexity and Kadec-Klee Type Properties in K-interpolation spaces II

2004 
We study local uniform convexity and Kadec-Klee type properties in K-interpolation spaces of Lorentz couples. We show that a wide class of Banach couples of (commutative and) non-commutative Lorentz spaces possess the (so-alled) (DGL)-property originally introduced by Davis, Ghoussoub and Lindenstrauss in the context of renorming order continuous Banach latties. This property is used as a key tool to show that local uniform convexity and certain Kadec-Klee type properties in non-commutative symmetric spaces of measurable operators may be inferred from corresponding properties of the parameter space of the K-interpolation method. Further applications are given to renorming properties of separable symmetric Banach function spaces and their non-commutative counterparts.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    4
    Citations
    NaN
    KQI
    []