KidneyNetwork: Using kidney-derived gene expression data to predict and prioritize novel genes involved in kidney disease

2021 
Abstract Background Genetic testing in patients with suspected hereditary kidney disease may not reveal the genetic cause for the disorder as potentially pathogenic variants can reside in genes that are not yet known to be involved in kidney disease. To help identify these genes, we have developed KidneyNetwork, that utilizes tissue-specific expression to predict kidney-specific gene functions. Methods KidneyNetwork is a co-expression network built upon a combination of 878 kidney RNA-sequencing samples and a multi-tissue dataset of 31,499 samples. It uses expression patterns to predict which genes have a kidney-related function and which (disease) phenotypes might result from variants in these genes. We applied KidneyNetwork to prioritize rare variants in exome sequencing data from 13 kidney disease patients without a genetic diagnosis. Results KidneyNetwork can accurately predict kidney-specific gene functions and (kidney disease) phenotypes for disease-associated genes. Applying it to exome sequencing data of kidney disease patients allowed us to identify a promising candidate gene for kidney and liver cysts: ALG6. Conclusion We present KidneyNetwork, a kidney-specific co-expression network that accurately predicts which genes have kidney-specific functions and can result in kidney disease. We show the added value of KidneyNetwork by applying it to kidney disease patients without a molecular diagnosis and consequently, we propose ALG6 as candidate gene in one of these patients. KidneyNetwork can be applied to clinically unsolved kidney disease cases, but it can also be used by researchers to gain insight into individual genes in order to better understand kidney physiology and pathophysiology. Significance statement Genetic testing in patients with suspected hereditary kidney disease may not reveal the genetic cause for the patient’s disorder. Potentially pathogenic variants can reside in genes not yet known to be involved in kidney disease, making it difficult to interpret the relevance of these variants. This reveals a clear need for methods to predict the phenotypic consequences of genetic variation in an unbiased manner. Here we describe KidneyNetwork, a tool that utilizes tissue-specific expression to predict kidney-specific gene functions. Applying KidneyNetwork to a group of undiagnosed cases identified ALG6 as a candidate gene in cystic kidney and liver disease. In summary, KidneyNetwork can aid the interpretation of genetic variants and can therefore be of value in translational nephrogenetics and help improve the diagnostic yield in kidney disease patients.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    1
    Citations
    NaN
    KQI
    []