A spatial model of CoVID-19 transmission in England and Wales: early spread and peak timing

2020 
Background: An outbreak of a novel coronavirus, named CoVID-19, was first reported in China on 31 December 2019. As of 9 February 2020, cases have been reported in 25 countries, including probable cases of human-to-human transmission in England. Methods: We adapted an existing national-scale metapopulation model to capture the spread of CoVID-19 in England and Wales. We used 2011 census data to capture population sizes and population movement, together with parameter estimates from the current outbreak in China. Results: We predict that a CoVID-19 outbreak will peak 126 to 147 days (~4 months) after the start of person-to-person transmission in England and Wales in the absence of controls, assuming biological parameters remain unchanged. Therefore, if person-to-person transmission persists from February, we predict the epidemic peak would occur in June. The starting location has minimal impact on peak timing, and model stochasticity varies peak timing by 10 days. Incorporating realistic parameter uncertainty leads to estimates of peak time ranging from 78 days to 241 days after person-to-person transmission has been established. Seasonal changes in transmission rate substantially impact the timing and size of the epidemic peak, as well as the total attack rate. Discussion: We provide initial estimates of the potential course of CoVID-19 in England and Wales in the absence of control measures. These results can be refined with improved estimates of epidemiological parameters, and permit investigation of control measures and cost effectiveness analyses. Seasonal changes in transmission rate could shift the timing of the peak into winter months, which will have important implications for healthcare capacity planning.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    59
    Citations
    NaN
    KQI
    []