Effect of ocular implants of different materials on the dosimetry of external beam radiation therapy

1995 
Purpose : To study the attenuation and scattering effects of ocular implants, made from different materials, on the dose distributions of a 6 MV photon beam, and 6, 9, and 12 MeV electron beams used in orbital radiotherapy. Methods and Materials : Central axis depth-dose measurements were performed in a polystyrene phantom with embedded spherical ocular implants using film dosimetry of a 6 MV photon beam and electron beams of 6, 9, and 12 MeV energy. The isodose distributions were also calculated by a computerized treatment planning system using computerized tomography (CT) scans of a polystyrene phantom that had silicone, acrylic, and hydroxyapatite ocular implants placed into it. Results : Electron beam dose distributions display distortions both on the measured and calculated data. This effect is most accentuated for the hydroxyapatite implants, for which the transmissions through ocular implants are on the order of 93% for the 6 MV photon beam, and range from 60% for 6 MeV electrons to 90% for 12 MeV electrons. Conclusion : We studied the effect of ocular implants of various materials, embedded in a polystyrene phantom, on the dose distributions of a 6 MV photon beam, and 6, 9, and 12 MeV electron beams. Our investigations show that while 6 MV photons experience only a few percent attenuation, lower energy electron beam with 60% transmission is not a suitable choice of treating tumors behind the ocular implants.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    6
    Citations
    NaN
    KQI
    []